non-abelian, soluble, monomial
Aliases: S32⋊D5, C5⋊2S3≀C2, (C3×C15)⋊1D4, C32⋊(C5⋊D4), D15⋊S3⋊1C2, C3⋊S3.1D10, C32⋊Dic5⋊2C2, (C5×S32)⋊3C2, (C5×C3⋊S3).2C22, SmallGroup(360,133)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C5×C3⋊S3 — S32⋊D5 |
C1 — C5 — C3×C15 — C5×C3⋊S3 — D15⋊S3 — S32⋊D5 |
C3×C15 — C5×C3⋊S3 — S32⋊D5 |
Generators and relations for S32⋊D5
G = < a,b,c,d,e | a5=b3=c3=d4=e2=1, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=d-1 >
Character table of S32⋊D5
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 5A | 5B | 6A | 6B | 10A | 10B | 10C | 10D | 10E | 10F | 15A | 15B | 15C | 15D | 15E | 15F | 30A | 30B | 30C | 30D | |
size | 1 | 6 | 9 | 30 | 4 | 4 | 90 | 2 | 2 | 12 | 60 | 6 | 6 | 6 | 6 | 18 | 18 | 4 | 4 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 2 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | -2 | 2 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | complex lifted from C5⋊D4 |
ρ11 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | complex lifted from C5⋊D4 |
ρ12 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | complex lifted from C5⋊D4 |
ρ13 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | complex lifted from C5⋊D4 |
ρ14 | 4 | 0 | 0 | -2 | 1 | -2 | 0 | 4 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | -2 | 0 | 0 | -2 | 1 | 0 | 4 | 4 | 1 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 0 | 0 | 2 | 1 | -2 | 0 | 4 | 4 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 2 | 0 | 0 | -2 | 1 | 0 | 4 | 4 | -1 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | -2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | -2 | 0 | 0 | -2 | 1 | 0 | -1+√5 | -1-√5 | 1 | 0 | -2ζ53 | -2ζ52 | -2ζ54 | -2ζ5 | 0 | 0 | 2ζ53-ζ52 | 2ζ54-ζ5 | -ζ53+2ζ52 | -ζ54+2ζ5 | 1+√5/2 | 1-√5/2 | ζ54 | ζ5 | ζ53 | ζ52 | complex faithful |
ρ19 | 4 | 2 | 0 | 0 | -2 | 1 | 0 | -1-√5 | -1+√5 | -1 | 0 | 2ζ54 | 2ζ5 | 2ζ52 | 2ζ53 | 0 | 0 | 2ζ54-ζ5 | -ζ53+2ζ52 | -ζ54+2ζ5 | 2ζ53-ζ52 | 1-√5/2 | 1+√5/2 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | complex faithful |
ρ20 | 4 | 2 | 0 | 0 | -2 | 1 | 0 | -1-√5 | -1+√5 | -1 | 0 | 2ζ5 | 2ζ54 | 2ζ53 | 2ζ52 | 0 | 0 | -ζ54+2ζ5 | 2ζ53-ζ52 | 2ζ54-ζ5 | -ζ53+2ζ52 | 1-√5/2 | 1+√5/2 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | complex faithful |
ρ21 | 4 | 2 | 0 | 0 | -2 | 1 | 0 | -1+√5 | -1-√5 | -1 | 0 | 2ζ53 | 2ζ52 | 2ζ54 | 2ζ5 | 0 | 0 | 2ζ53-ζ52 | 2ζ54-ζ5 | -ζ53+2ζ52 | -ζ54+2ζ5 | 1+√5/2 | 1-√5/2 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | complex faithful |
ρ22 | 4 | -2 | 0 | 0 | -2 | 1 | 0 | -1-√5 | -1+√5 | 1 | 0 | -2ζ54 | -2ζ5 | -2ζ52 | -2ζ53 | 0 | 0 | 2ζ54-ζ5 | -ζ53+2ζ52 | -ζ54+2ζ5 | 2ζ53-ζ52 | 1-√5/2 | 1+√5/2 | ζ52 | ζ53 | ζ54 | ζ5 | complex faithful |
ρ23 | 4 | -2 | 0 | 0 | -2 | 1 | 0 | -1-√5 | -1+√5 | 1 | 0 | -2ζ5 | -2ζ54 | -2ζ53 | -2ζ52 | 0 | 0 | -ζ54+2ζ5 | 2ζ53-ζ52 | 2ζ54-ζ5 | -ζ53+2ζ52 | 1-√5/2 | 1+√5/2 | ζ53 | ζ52 | ζ5 | ζ54 | complex faithful |
ρ24 | 4 | -2 | 0 | 0 | -2 | 1 | 0 | -1+√5 | -1-√5 | 1 | 0 | -2ζ52 | -2ζ53 | -2ζ5 | -2ζ54 | 0 | 0 | -ζ53+2ζ52 | -ζ54+2ζ5 | 2ζ53-ζ52 | 2ζ54-ζ5 | 1+√5/2 | 1-√5/2 | ζ5 | ζ54 | ζ52 | ζ53 | complex faithful |
ρ25 | 4 | 2 | 0 | 0 | -2 | 1 | 0 | -1+√5 | -1-√5 | -1 | 0 | 2ζ52 | 2ζ53 | 2ζ5 | 2ζ54 | 0 | 0 | -ζ53+2ζ52 | -ζ54+2ζ5 | 2ζ53-ζ52 | 2ζ54-ζ5 | 1+√5/2 | 1-√5/2 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | complex faithful |
ρ26 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 1+√5 | 1-√5 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 1-√5 | 1+√5 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)
(1 19)(2 18)(3 17)(4 16)(5 20)(6 22 11 27)(7 21 12 26)(8 25 13 30)(9 24 14 29)(10 23 15 28)
(2 5)(3 4)(6 7)(8 10)(11 12)(13 15)(16 17)(18 20)(21 27)(22 26)(23 30)(24 29)(25 28)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13), (1,19)(2,18)(3,17)(4,16)(5,20)(6,22,11,27)(7,21,12,26)(8,25,13,30)(9,24,14,29)(10,23,15,28), (2,5)(3,4)(6,7)(8,10)(11,12)(13,15)(16,17)(18,20)(21,27)(22,26)(23,30)(24,29)(25,28)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13), (1,19)(2,18)(3,17)(4,16)(5,20)(6,22,11,27)(7,21,12,26)(8,25,13,30)(9,24,14,29)(10,23,15,28), (2,5)(3,4)(6,7)(8,10)(11,12)(13,15)(16,17)(18,20)(21,27)(22,26)(23,30)(24,29)(25,28) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13)], [(1,19),(2,18),(3,17),(4,16),(5,20),(6,22,11,27),(7,21,12,26),(8,25,13,30),(9,24,14,29),(10,23,15,28)], [(2,5),(3,4),(6,7),(8,10),(11,12),(13,15),(16,17),(18,20),(21,27),(22,26),(23,30),(24,29),(25,28)]])
G:=TransitiveGroup(30,96);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 16)(2 20)(3 19)(4 18)(5 17)(6 29 11 24)(7 28 12 23)(8 27 13 22)(9 26 14 21)(10 30 15 25)
(1 16)(2 20)(3 19)(4 18)(5 17)(6 24)(7 23)(8 22)(9 21)(10 25)(11 29)(12 28)(13 27)(14 26)(15 30)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,16)(2,20)(3,19)(4,18)(5,17)(6,29,11,24)(7,28,12,23)(8,27,13,22)(9,26,14,21)(10,30,15,25), (1,16)(2,20)(3,19)(4,18)(5,17)(6,24)(7,23)(8,22)(9,21)(10,25)(11,29)(12,28)(13,27)(14,26)(15,30)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,16)(2,20)(3,19)(4,18)(5,17)(6,29,11,24)(7,28,12,23)(8,27,13,22)(9,26,14,21)(10,30,15,25), (1,16)(2,20)(3,19)(4,18)(5,17)(6,24)(7,23)(8,22)(9,21)(10,25)(11,29)(12,28)(13,27)(14,26)(15,30) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,16),(2,20),(3,19),(4,18),(5,17),(6,29,11,24),(7,28,12,23),(8,27,13,22),(9,26,14,21),(10,30,15,25)], [(1,16),(2,20),(3,19),(4,18),(5,17),(6,24),(7,23),(8,22),(9,21),(10,25),(11,29),(12,28),(13,27),(14,26),(15,30)]])
G:=TransitiveGroup(30,100);
Matrix representation of S32⋊D5 ►in GL6(𝔽61)
34 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 59 | 15 |
0 | 0 | 0 | 0 | 12 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 59 | 15 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
G:=sub<GL(6,GF(61))| [34,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,59,12,0,0,0,0,15,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,59,12,0,0,0,0,15,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,60,12,0,0,0,0,0,1,0,0],[0,60,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,12,0,0,0,0,0,1] >;
S32⋊D5 in GAP, Magma, Sage, TeX
S_3^2\rtimes D_5
% in TeX
G:=Group("S3^2:D5");
// GroupNames label
G:=SmallGroup(360,133);
// by ID
G=gap.SmallGroup(360,133);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-5,73,579,201,111,244,376,10373]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of S32⋊D5 in TeX
Character table of S32⋊D5 in TeX